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Abstract

Low-resource languages and dialects, such as Swiss German, require systems that can
generalize over several languages to develop state-of-the-art speech translation and
recognition applications. This thesis tests the capabilities of the Transformer-based
pre-trained cross-lingual Wav2Vec2-XLS-R model on Swiss German corpora. We
experiment with both a speech translation system from Swiss German to Standard
German and a classification system, assigning dialects to one of four regions, for
evaluation. We apply 2100 hours of unlabelled Swiss German data in a pre-training
setup to explore the impact this data has on the already pre-trained model. The
result of the thesis is a translation system that achieves 18.08% WER and 68.86
BLEU on the “SNF” test corpus and 68.05 BLEU on the “SDS-200” test split. It
ranked first in the SwissText “2nd Swiss German Speech to Standard German Text”
shared task with 68.1 BLEU on the private evaluation split. The classification task
of categorising dialects into four distinct regions achieves a weighted F1-score of 0.49,
with the best region reaching 0.68 F1. We showed that providing additional pre-train
data at this scale to the XLS-R model is not beneficial for speech translation, but
can have a positive impact during classification. By discussing potential approaches
for future research we hope to increase the interest on this topic.
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Zusammenfassung

Sprachen und Dialekte mit geringen Datenmengen, wie z.B. Schweizerdeutsch, er-
fordern Systeme, die über zahlreiche Sprachen hinweg verallgemeinern können, um
moderne Sprachübersetzungs- und Erkennungsanwendungen zu entwickeln. Diese
Arbeit testet die Fähigkeiten des Transformer-basierten, vortrainierten, sprachüber-
greifenden Wav2Vec2-XLS-R Modells auf schweizerdeutschen Korpora. Wir werten
das System anhand einem Sprachübersetzungssystem von Schweizerdeutsch auf Stan-
darddeutsch als auch einem Klassifikationssystem, welches Dialekte vier Regionen
zuweist, aus. Wir wenden zusätzlich 2100 Stunden unlabelled schweizerdeutscher
Daten in einem pre-training Verfahren auf das Modell an, um die Auswirkungen
dieser Daten auf das bereits vortrainierte System zu untersuchen. Das Ergebnis
dieser Arbeit ist ein Übersetzungssystem, das 18,08% WER und 68,86 BLEU auf
dem ”SNF” Testkorpus und 68,05 BLEU auf dem ”SDS-200” Test-Split erreicht.
Es belegte den ersten Platz im ”2nd Swiss German Speech to Standard German
Text” SwissText shared task mit 68,1 BLEU auf dem privaten Evaluationssplit.
Im Klassifikationsexperiment, welches Schweizer Dialekte in vier verschiedene Re-
gionen kategorisiert hat, wird ein gewichteter F1-Score von 0,49 erreicht, wobei die
Ostschweizer Region den besten F1 mit 0,68 erzielt. Wir haben gezeigt, dass die Ver-
wendung zusätzlicher pre-train Daten in dieser Grössenordnung beim XLS-R-Modell
für die Sprachübersetzung nicht von Vorteil ist, sich aber bei der Klassifizierung
positiv auswirken kann. Mithilfe einer Diskussion für zukünftige Forschungsansätze
hoffen wir, dass das Interesse für dieses Themengebiet steigt.
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Chapter 1

Introduction

Recent years have seen exponential growth in using neural networks to solve prob-
lems involving speech classification and recognition, along with transcription and
translation. This is due to its ability to work with incomplete knowledge on the do-
main of the task [1] and the reduced complexity of implementation provided through
a multitude of different libraries. These problems belong to the Natural Language
Processing (NLP) subbranch in Artificial Intelligence (AI), which in the last decade
has see a shift from the traditional statistical approach to the aforementioned neural
network approach involving Deep Learning (DL).

Switzerland is a federation comprising 26 cantons with four official languages: Ger-
man, French, Italian, and Romansh. These languages are spoken in many dialects,
with Swiss German making up the largest language group, being adopted by 21
of the 26 cantons and spoken by 62.3% of the population [2]. Automatic Speech
Recognition (ASR) has not been as effective for Swiss German as for other lan-
guages, based on the need for large quantities of training data in neural networks.
Compared to Standard German, English, or Mandarin, Swiss German belongs to
so-called low-resource languages, which often lack the required data quantities for
training neural models.

The barrier for low-resource languages has been largely lifted with the release of
Transformers-based pre-trained models like BERT [3] and Wav2Vec [4]. The efforts
of SwissNLP and other Swiss institutions to create publicly accessible corpora like
the SDS-200 [5] have now given the Swiss public the tools needed to implement
Swiss German NLP systems like Speech-to-Text (STT) translation or recognition.

In this thesis, we seek to implement a system that can translate Swiss German
dialects into Standard German and classify them into four regions. By utilising the
pre-trained cross-lingual Wav2Vec2-XLS-R model, we want to research the impact
of additional unlabelled Swiss German pre-training data on the model to improve
previous results achieved in the area. We compare our results with previous work
by using downstream fine-tuning on STT translation and classification. By entering
our models to the SwissText Swiss German Speech to Standard German Text shared
task [6], we want to test their capabilities in a competitive setting.
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1.1. LITERATURE REVIEW CHAPTER 1. INTRODUCTION

1.1 Literature review

Natural Language Processing is a subbranch of Artificial Intelligence with roots in
linguistics that concerns itself with giving computers the ability to understand text
and speech, including contextual nuances of the languages within them, to help
analyze and interpret human languages. Automatic Speech Recognition is one of
the various subtasks of NLP and aims at building systems that can automatically
recognize and transcribe speech into text. Within this discipline is the underly-
ing subject of STT translation and Dialect Identification (DID). Many traditional
approaches have recently been replaced by neural-network-based pre-trained Trans-
former models [7], such as the 2019 introduced text-based BERT model [3]. Several
new Transformer-based architectures have since emerged and are currently state-of-
the-art (SOTA) in the NLP world. References for different applications in the tasks
of pre-training, STT translation, and dialect classification, which are applied in this
dissertation, will be provided.

In December of 2020 Abdul-Mageed et al. released two Arabic pre-trained BERT-
based models called ARBERT (standard) and MARBERT (for dialects). The AR-
BERT model is trained on Modern Standard Arabic (MSA) sources. Alongside the
ARBERT model, the so-called MARBERT model was released as well, since the
Arabic language contains a large number of diverse dialects. After fine-tuning the
models on multiple tasks such as sentiment analysis, topic classification, and DID
they outperformed previous SOTA F1 scores by sizeable margins with the best score
reaching 90.89% in the QADI country-level dialect corpus. They were thus able to
display the positive impact task-specific pre-training can have on a language or di-
alect. [8][9]

Speech translation using Wav2Vec has been extensively tested by Wu et al. and
showed that the self-supervised approach of the model is capable of improving
translation performance. They used the model on a setup for both English-to-X
and X-to-English translations. On the translations from English to a different lan-
guage the model achieved a BLEU of 29.8 for French and 28.2 for Romanian. On
the task of translating other languages into English, the model achieved the best
performance on French-to-English with a BLEU score of 23.00. [10]

Publications on Swiss German speech translation systems have also increased over
of the last years. Garner et al. [11] used Hidden Markov models to transcribe the
Valais dialect into Standard German achieving a WER of 19.4% in 2014. In 2020
the Swiss-Text shared task ”GermEval 2020 Task 4: Low-Resource Speech-to-Text”
[12] provided participants with 74 hours of speech originating predominantly from
the Bernese parliament to create a speech translation system from Swiss German
to Standard German. The best performing team reached a WER of 40.29% using
the Jasper CNN acoustic model [13]. In the first SwissText ”Swiss German speech
to Standard German text” shared task was held in 2021 [14] to create a model that
can transcribe Swiss German to Standard German. The metric used for evaluating
the submissions was BLEU. The best and only team to beat the baseline model was
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1.1. LITERATURE REVIEW CHAPTER 1. INTRODUCTION

Microsoft, which used a hybrid system incorporating a translation lexicon, a first
pass language model with Swiss German data, an acoustic model based on transfer
learned Standard German data, and a second pass neural language model for pass
rescoring. They achieved a BLEU score of 46.04 with the baseline having a BLEU
of 41.0. ZHAW also submitted a solution based on ensembling three different ap-
proaches, with one of these applying the XLSR-53 model. They achieved a BLEU
score of 39.4 and reached second place when discounting the baseline model. Sub-
sequently, on the 4th of October 2021, Microsoft announced a general availability
release of Swiss German speech recognition and transcription on their Azure plat-
form [15].

Dialect classification of Finnish dialects was performed by Hämäläinen et al. from
the University of Helsinki. They compared two separate approaches to for classifi-
cation. The first one was text only using a bi-directional long short-term memory
(LSTM) based model. The second and much better performing approach was a com-
bination of text and audio using a siamese neural network architecture that combined
both BERT [3] and the Wav2Vec 2.0 XLSR-53 [16][17] architecture. They used the
FinBERT model released in [18] with a Finnish fine-tuned XLSR-53 model. By
implementing a fixed input length and a global average pooling for BERT using an
adaptive average pooling for the Wav2Vec part of the model they ensured that each
side produced an equal size of features. The results showed that the combinatory
model had consistently higher scores than the text-only based model with multiple
dialects having an F1-score of more than 0.90 while the best text-only model score
was 0.75. It indicated that the audio contained features that were not sufficiently
covered by the transcriptions in the dataset used by the team. Additionally, an
observation was made where dialects with low sample sizes still had high F1-scores
suggesting that large amounts of data for any single dialect do not necessarily have
to result in high scores. [19]

For Swiss German, the VarDial 2019 shared task ”Third German Dialect Identifica-
tion (GDI)” outlined a setup in which texts originating from the regions of BE, BS,
LU, and ZH had to be classified. The best team reached a macro F1 of 75.93% with
the ZHAW TwistBytes team of Benites et al. [20] reaching 74.55% macro F1. [21]

In 2021 we performed four experiments on Swiss German dialects using the Wav2Vec2-
XLSR-53 model in the scope of a project thesis. Using an smaller unreleased version
SDS-200 [5] corpus we tested a Swiss German fine-tuned version of XLSR-53 [22] to
differentiate the various dialects based on different grades of granularity. The best
performing experiment was categorising the dialects into four distinct regions based
on their linguistic similarity and geographic proximity. The model achieved a macro
F1 of 45.96% and a weighted F1 of 0.5.
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1.2. OUTLINE CHAPTER 1. INTRODUCTION

1.2 Outline

This work begins with an introduction (Chapter 1) of the various questions and top-
ics covered and follows the literature review in order to be oriented towards other
works and results that are to some extent related to the thesis. In the Foundations
Chapter 2, the concepts and instruments used are described with sufficient detail
so that the experiments can be comprehensively understood. In order to provide
an insight to the data used, Data Collection Chapter 3 contain the necessary in-
formation on these. SwissText Shared Task Chapter 4 deals with the matters we
had to do for the SwissText conference. The experiments we did are described in
the Experimental Setup Chapter 5. This contains the information needed to trace
how the results were obtained, which are then presented in the Result Chapter 6.
Finally we find the Discussion and Outlook Chapter 7 where the results obtained as
a whole, both positive and negative, are interpreted and some possibilities for future
work are discussed.
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Chapter 2

Foundations

2.1 Speech Processing

Allowing users to interact with machines and devices using their natural verbal
language has been a topic of research for a long time. Since the invention of the
famous Bell telephone in 1952 [23] numerous advances have been achieved. The
progress has been relatively fast from the hidden Markov models to the gaussian
mixture models and in the last decade the different neural network architectures.
Two current examples of speech processing applications are Apple’s Siri, Microsofts’s
Cortana, and Amazon’s Alexa which can process and respond to natural language
in a precise manner [24].

2.2 Speech Translation

Speech translation in the context of NLP is a process in which a spoken language
is translated automatically from its original language to a target language. The
translation can be in form of Speech-to-Text (STT) or Speech-to-Speech (STS).
Concerning the globalisation of our world the task has become vital to form a com-
munication bridge for people all over the world [25]. The task has multiple problems
which have to be solved concerning the different lengths of the translation sentences,
the different vocabulary used, separate alphabets, and differences in grammar. A few
of these issues have effectively been solved by the community since the emergence
of the field. However, performance improvements are still possible and research in
the field thus continues to be strong.

2.3 Dialect Identification

Dialect identification is a subtask of ASR which concerns itself with recognising
and classifying dialects. Different from language identification, DID thus requires
systems to differentiate parts of the same language family by trying to learn the
various uses of grammar and vocabulary. The most common type of dialect is the
geographic dialect, characterised by regional boundaries in which they are spoken.
These borders are not static and dialects in proximity deviate barely from each
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other, while differences are more pronounced in regions that are further away. [26]
Swiss German is a collection of such dialects. A factor that makes DID a lot more
complex is the oftentimes limited amount of labelled text and audio data. [27] As
there are no standardisations in these dialects, be that grammar or pronunciation,
they also are more susceptible to change over time. Based on these factors, a need
arose for an architecture that can sufficiently identify dialects while only having
access to a low amount of resource data.

2.4 Transformers

Transformers are a new SOTA encoder-decoder model developed by Vaswani et al.
in 2017, designed to handle sequential data such as natural language, which solely
uses attention mechanisms by removing the recurrent neural network (RNN) part of
the architecture that most systems used until then. RNNs are sequential by design,
which prohibits them from being used in a parallel architecture. This has negative
implications towards system performance, most notably when working with longer
sequence lengths, which impacts memory usage. Tests not only demonstrated signif-
icant improvements in performance but also evaluation scores in translation tasks,
thus suggesting that Transformers should be able to be used on other tasks as well.
They confirmed the thesis with the release of BERT in 2019 [3], which improved
evaluation scores on eleven different NLP tasks. As a result, Transformers have be-
come the de facto standard encoder-decoder architecture in NLP. An overview of the
most important aspects of Transformers is given to allow for a better understanding
of the concepts discussed in this thesis. [7]

2.4.1 Encoder and Decoder

At the base of Transformers lays the encoder-decoder architecture as visualised in
Figure 2.1. Based on [7] and [28] an explanation is given on the inner workings
of the technology to enable a better understanding. The architecture is built on
the sequence-to-sequence model which aims at finding a mapping f based on a
sequence of arbitrary length X1:n to a different arbitrary length sequence Y1:m, thus
forming the relation of f : X1:n 7→ Y1:m. In the case of Transformers, both the
encoder and decoder are operating as a stack, with each of them having 6 identical
layers. Applicability of real-world problems for this kind of model is any type of
task generating text like translations from one language to another.

12
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Figure 2.1: Structure of encoder-decoder in the Transformers architecture, figure
taken from [7] [29]

Since a sentence depends upon the position of its words to convey the meaning, the
same has to be done for the model. In a pre-processing step in both the encoder and
decoder, the input is split up into tokens with their respective positional encoding
to ensure that the model has access to their relative position. The encoder then
encodes the input sequence X1:n to a sequence of hidden states forming X1:n of
dimension dmodel = 512. Using these encoded hidden states the decoder then models
the conditional probability distribution of the target sequence Y1:m. Factoring the
distribution to a product of the encoded hidden states X1:n, the distribution of target
vector yi, and all previous target vectors Y0:i−1 the decoder can then map these
elements to a logit vector li. A Softmax function is then applied to the li vector,
which returns the conditional distribution for yi. The most important difference to
the RNN-based architectures is that this operation explicitly considers all previous
target vectors Y0:i−1, which was not feasible in the sequential design of the RNNs
that only implemented it implicitly. Two special vectors, the end-of-sentence EOS
and begin-of-sentence BOS vector, are added to the operation as well. While the
EOS vector is applied to both encoder and decoder as the last vector xn and ym,
respectively, the BOS is only used in the decoder at the 0th position y0. The
operation is visualised with an example for better understanding in Figure 2.2. [28]

13
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Figure 2.2: Visualization of auto-regressive generation in Transformer-based
encoder-decoder model, figure taken from [28]

Each individual hidden state X1:n such as x3 is not simply dependent on the input
counterpart x3 ”to” but on the complete input ”I”, ”want”, ..., ”car”, including x7

”EOS”. This batch of input encodings is then combined with y0 ”BOS” to create
l1 that represents the conditional distribution for y1. The target vector y1 is then
sampled from l1 and fed back into the decoder including all previously used target
vectors Y0:i−1, which in this case is y0, to create the conditional distribution of
the next target vector y2. This operation continues in an auto-regressive fashion.
Important to note is that the encoder operation is only performed once, as portrayed
on the right side in Figure 2.1. Afterwards, the decoder is handling the operations
on its own in a loop by reusing the calculated input encodings X1:n.

2.4.2 Attention

Attention was first introduced by Bahdanau et al. in 2014 [30] to provide a neural
architecture that can dynamically highlight relevant features in both raw inputs
and higher-level representations of said input [30][31]. Transformers extensively
utilise attention, specifically self-attention, as explained in section 2.4 by using the
mechanism inside its encoder-decoder architecture [7].

Self-Attention

To understand the operations performed inside each encoder and decoder sub-layer,
as seen in Figure 2.2, the self-attention mechanism has to be explained by taking
examples from [29], [32] and [33]. In essence, self-attention allows for n inputs to
interact with each other (the ”self” part of the term) and then calculates to which of
these it should pay more attention to (the ”attention” part). After having finished
calculating, it aggregates the interactions and attention scores to n outputs. The

14



2.4. TRANSFORMERS CHAPTER 2. FOUNDATIONS

operation performed in this step is termed as ”Scaled Dot-Product Attention” by
Vaswani et al. [7], which is illustrated in Figure 2.3.

Figure 2.3: Scaled Dot-Product Attention, original figure on the left taken from [7]
and the more precise version on the right taken from [32]

Calculating the scalar product directly on the input embedding would lead to an
issue where similar tokens receive a higher value and dissimilar tokens a lower value.
Relationships between tokens that would otherwise be important in a linguistic set-
ting like that of a subject and a verb or a preposition and a complement are ignored
in this way [32]. Attention thus introduces three projection vectors to combat this
issue: keys K, queries Q and values V . These are calculated by multiplying the in-
put vector xi with a corresponding weight matrix Wk, Wq or Wv, which is randomly
initialised at first and then taken as a learning parameter by the model. Each vector
has a different role: Keys are vectors used to calculate attention against and could
be seen as an indexing mechanism for values V , similar to a database. Queries can
be thought of as the currently processing token for which the attention is calculated
for. Values are used to apply attention, where each value vi and its corresponding
key ki can provide two different interpretations of the same entity [31]. An impor-
tant difference is the source from these vectors are created from. In the encoder K,
Q and V are all from the same document while in the decoder the Q is from the
target document while K and V are both from the source document. [7][29][33]

As seen in Figure 2.3, the first operation is to take a newly calculated query Q
and, by performing a dot product with all keys K, find the most similar key. The
higher the resulting score for each query-key pair, the closer their relationship to
each other is. After this, a scaling operation is performed on the result by dividing it
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with the square root of the dimensions of the key vector dk to counteract a problem
where large values in the dot product result in pushing the subsequent Softmax
operation to regions where only extremely small gradients exist [7]. To pronounce
higher and lower scores, the previously mentioned Softmax operation is applied by
driving them more towards 1 and 0, respectively. At last, the Softmax distribution
is multiplied with values V where values multiplied by scores closer to 1 will receive
more attention than those closer to 0. The resulting equation 2.1 is shown below.

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (2.1)

Multi-Head Attention

Figure 2.4: Architecture of Multi-head attention, original figure on the left taken
from [7] and the more precise version on the right taken from [32]

The creators of Transformers found it beneficial to apply attention in a parallel
multi-layer setup by stacking h = 8 self-attention layers together where each layer
would concentrate on a different set of K, Q and V , which allows the model to
explore different relations for the same tokens. First, the three vectors and their
corresponding weight matrices Wk, Wq or Wv are reduced in size. All h sets of K,
Q and V are termed as ”attention head” and instead of averaging the generated
outputs like a single attention head would, a concatenation operation is performed
to form one large contextualised embedding [29]. This embedding is then multiplied
by a last weight matrix WO. By reducing the dimensions of the 8 attention heads,
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the team could bring the computational cost to a similar level of a single attention
layer with the complete dimensionality of the vectors and weight matrices. The
operation is formalised in equation 2.2 and visualised in Figure 2.4. [7]

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO

where headi = Attention(QWQ
i , KWK

i , V W V
i )

(2.2)

Types of Multi-Head Attention used

Transformer employs three different implementations of multi-head attention, all of
which are depicted in Figure 2.5. The first type is the input self attention used in
the encoder where the hidden encodings are created as explained in section 2.4.1.

Figure 2.5: Types of multi-head attention inside transformers, figure taken from
[29]. Marked in blue is the encoder input self-attention, in yellow the decoder output
masked self-attention, and in green the encoder-decoder self-attention

The second type is the decoder output masked self-attention layer, which is similar
to the first type but differs in that it performs a masking operation on the input.
A sequence mask is applied because of the parallel architecture of Transformers,
which does not have a built-in mechanism to prohibit comparisons from being made
after a time step t. This would allow the model to generate predictions with future
information. As discussed in section 2.4.1, a decoded output yi should only depend
on itself and the previous outputs y0, ..., yi−1 and predict the subsequent vector yi+1.
Having information about yi+1 ahead of the prediction would seriously impair the
training and thus needs to be restricted. The resulting masking matrix can differ
based on the chosen visualisation, but in this example, an upper triangular matrix
is introduced, represented in Figure 2.6 where the upper violet half is initially filled
by −∞ and then transformed to zeros by the Softmax operation. An additional
visualisation with values is provided in Figure 2.7. [34]
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Figure 2.6: Upper triangular matrix, figure taken from [35]

Masking all subsequent words with zeros removes the possibility of y1 accessing
information about y2, ..., ym as an example. This mask was termed as ”Look-Ahead
mask” by the the authors [7].

Figure 2.7: Application of Look-Ahead mask on a word sequence, figure taken from
[34]

The encoder-decoder attention layer in Figure 2.5 is the last type. It queries both
the output of the masked self-attention layer and the contextualised output of the
encoder to formulate a calculation based on both the previously generated target
sequences as well as the initial input sequence. Special in this layer is that the query
vector is taken from the masked self-attention layer and the key and value vectors
from the output of the encoder. This operation has been described in section 2.4.1.
[34]

2.5 Wav2Vec

Baevski et al. [4] released Wav2Vec originally in 2019 to reduce the dependency
on large amounts of transcribed audio data for training to achieve SOTA perfor-
mance. It is uniquely difficult to obtain transcribed audio data compared to other
types of data because of the presence of time [36]. Labelled audio data needs to be
either recorded for a specific sentence or cut into pieces from a larger audio file like
a podcast to which afterwards a sentence that matches the spoken speech has to
be assigned. Creating corpora for uncommon languages and dialects such as Swiss
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German is often not feasible because of both low interest in the corporate world and
missing available resources to begin with. Wav2Vec and other similar models like
BERT [3] achieve their goals by performing extensive unsupervised pre-training on
thousands of hours of unlabelled data. During a second fine-tuning step labelled
data is given to the model which then uses the information learned during pre-
training to adapt itself and thus reducing the amount of data needed compared to
a traditional approach. [4]

The model is a convolutional neural network (CNN) largely based on both the 2017
released Transformer architecture [7], of which an overview can be found in section
2.4, and the 2019 released BERT model [3].

Multiple iterations have since emerged, of which we will only discuss variants of the
2020 released Wav2Vec 2.0 model [16]. Compared to the original model, this and all
subsequent versions switched from the unsupervised approach to self-supervision,
with which significant improvements in accuracy were achieved. However, dur-
ing the evaluation, the research team observed that the monolingual nature of the
base model was only beneficial for English data and not for other languages. Thus,
the cross-lingual Wav2Vec2-XLSR-53 model was created which can generalise across
multiple languages and contains about 50k hours of data from 53 different languages
in its pre-training step [17]. In 2021, the latest version of Wav2Vec2, the Wav2Vec2-
XLS-R model, has been released which seriously improved upon the XLSR-53 model
by using 436k hours of training data from 128 different languages [37].

This thesis is based on the XLS-R model and will thus be the primary focus going
forward when explaining the inner workings of Wav2Vec2.

2.5.1 Pre-Training

Pre-training is used for so-called transfer learning, which refers to the attempt at
training a model with a certain goal to generate parameters that can be used down-
stream in a different task. The concept is inspired by the human ability to transfer
already learned ”old” knowledge and apply it in a new but similar setting, thus not
having to learn everything from the start again. Transformer apply both aforemen-
tioned steps, with the ”old” knowledge being learned during pre-training and trans-
ferring said knowledge during the fine-tuning phase for a new task. Self-supervision
during this pre-training phase enabled Wav2Vec to use unlabelled data and can thus
utilise larger amounts of resources that are also more readily available. [16]

2.5.2 Latent Speech Representation

Phonemes are a linguistic concept that represent the smallest unit in speech with
which differentiations between similar sounding words or word elements can be made.
They are divided into vowels and consonants, of which all languages and dialects
have different sets of [38]. This changes, however, when analysing recorded speech
waveforms which can exhibit a variance based on emotional state, individual speak-
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ing style, linguistic content and more [39]. By trying to extract the smallest distinct
elements, the so-called latent speech representation can be captured. Until recently,
hand-crafted solutions were the norm, which were expensive to implement in both
time and resources. This changed with the advent of Transformer based models
where the speech representations could be learned during pre-training using the
large amounts of unlabelled data.

2.5.3 Quantization

Values in a continuous space, such as the latent speech representations, have to
be brought back into a finite set of values in the discrete space. Wav2Vec2 uses
quantization to perform this operation and provides G codebooks with V entries for
this. For every latent speech representation zt, the model takes the best matching
entry of each codebook and concatenates them into a vector et that is then processed
into a quantized representation qt by a linear transformation to give the model a
target for learning by comparison. [16][40]. Figure 2.8 illustrates this operation.

Figure 2.8: Quantization process, figure by  Lukasz Sus taken from [40]

To allow a certain freedom during the early stages of training, the Gumbel Softmax
randomisation algorithm is introduced to this operation. By allowing randomisation,
the model can consider combinations of different entries V that could be beneficial
for training, which it otherwise would have dismissed. So-called temperature is used
as well to reduce the impact of the randomisation over time by lowering it from the
initial value of 2 to 0.5. [16][40]

2.5.4 Masking

Before passing the latent speech representations to the Transformer for further pro-
cessing, a mask is applied to the input. This mask uses a probability p = 0.065 of
all representations, also called time steps, to be used as starting indices for subse-
quent time steps M = 10 to be masked as well. Masked inputs will then have to
be filled back in by the Transformer architecture and compared to the quantized
representations. This step is crucial for the model to learn by comparison. Figure
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2.9 depicts an example where index 8 and 12 have been selected by probability p as
starting indices, with each then masking the M subsequent time steps. This results
14 masked time steps, as some of them overlap with each other. [16][40]

Figure 2.9: Masking process of two indices and the subsequent 10 times steps, figure
by  Lukasz Sus taken from [40]

2.5.5 Contrastive learning

Contrastive learning is defined in [41] as a concept that aims to learn by comparing
among different samples and grouping them into either a ”similar” or ”dissimilar”
group. These two clusters are situated far away from each other in the embedding
space to ensure that during contrasting of positive pair samples only the positive
representations of the ”similar” cluster are pulled together and vice versa for nega-
tive pair samples and negative representations of the ”dissimilar” cluster. Wav2Vec2
employs this learning mechanism during pre-training to guess the correct quantized
representation qt using the Transformer generated contextualised representation ct.
A benefit of using contrastive methods is that the model architecture does not have
to be modified for fine-tuning compared to other self-supervised learning architec-
tures such as [42].

2.5.6 Connectionist Temporal Classification (CTC)

Before a model can make transcribed predictions, the audio representations have
to be classified into a sequence of output letters [43]. Early audio models required
external Language Models and a dictionary to transform audio frames into a valid
transcription. With CTC, developed by Graves et al. [44], an algorithm was created
that can automatically learn the alignments of speech and their transcriptions by
implementing a loss function that, for a given speech input X, tries to maximize
the probability that the produced text output Y is correct. By learning this align-
ment autonomously the issue with different sizes of input and output is solved as
well. CTC can be applied to encoder-decoder architectures, and both encoders and
decoders do not have restrictions concerning their implementation. [45][43]
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Figure 2.10: Alignment of speech to a transcript, figure taken from [45]

A shortcoming of CTC is that it is conditionally independent, meaning that it
assumes that an output is independent of other outputs from the same input. This
assumption is erroneous and will be explained with an example from [45]. If an
audio sample contains the sequence ”triple A” then the transcript could either be
”triple A” or ”AAA”. Should a model predict the first character to be ”A” then
the first option is not valid anymore. CTC does not take this into account and can
thus lead to reductions in accuracy during training. However, if needed, this can be
fixed by using an external Language Model on the output of a CTC-based model to
boost the performance. The problem is illustrated in Figure 2.11.

Figure 2.11: Issue of conditional independence, figure taken from [45]

Wav2Vec2 leverages the CTC algorithm for fine-tuning and uses the contextualised
audio classifications originating from the Transformer layers to remove the depen-
dency on an external Language Model to achieve acceptable transcriptions. [43]
The authors of Wav2Vec draw attention to the issue with CTC’s conditional inde-
pendence in their paper [16] by actively promoting the use of LMs to increase the
accuracy of the model.

2.5.7 Wav2Vec 2.0 Model Architecture

All aforementioned concepts are combined into the Wav2Vec 2.0 architecture, which
is visualised in Figure 2.12. During pre-training, the raw waveform X is fed into the
multi-layer CNN feature encoder which yields the latent speech representations Z,
forming the relationship of f : X 7→ Z. By first masking (see section 2.5.4) and then
passing these representations to the Transformer architecture, the contextualised
representations C are built, forming g : Z 7→ C. As discussed in section 2.5.3, these
latent speech representations are discretized with a quantization module to form Q
as comparison targets for the model by a relation of Z 7→ Q. [16]
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Figure 2.12: Architecture of Wav2Vec 2.0, figure taken from [16]

Each contextualised representation ct is then compared to a quantized representa-
tions qt using the contrastive loss, formalised in equation 2.3, with which it tries to
optimise the Transformer. κ is a temperature which is constant during training and
sim(a, b) denotes the cosine similarity. [16]

Lm = −log
exp(sim(ct, qt)/κ)∑
q̃∼Qt

exp(sim(ct, q̃)/κ)
(2.3)

Contrastive learning depends upon a varied use of quantized codebooks G with en-
tries V . As a result the diversity loss, formalised in equation 2.4, was introduced
which aims at using entropy and maximising it over an averaged Softmax distribu-
tion l for all entries in each codebook p̄g so that the model takes full advantage of
the provided code words. [16]

Ld =
1

GV

G∑
g=1

−H(p̄g) =
1

GV

G∑
g=1

V∑
v=1

p̄g,vlog(p̄g,v) (2.4)

The training goal of Wav2Vec2 is thus a sum of both the contrastive loss function
Lm and the diversity loss function Ld, forming equation 2.5. [16]

L = Lm + Ld (2.5)

2.5.8 Wav2Vec2 XLS-R Model Architecture

Wav2Vec2-XLS-R is a large-scale, cross-lingual, speech-representation model pro-
posed by Babu et al. [37] and is based on the Wav2Vec 2.0 architecture by Baevski
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et al. [16]. Taking inspiration from Wav2Vec2-XLSR-53 the team aimed at building
a more diverse model by using a larger amount of unlabelled training data that in-
cludes even more languages. They achieved this by applying 436k hours of data from
multiple sources, with the most significant one being the newly released VoxPopuli
corpus [46]. Three base versions have been released by the authors based on the
number of parameters available during training. From smallest to largest starting
with the 300 Million, then the 1 Billion and lastly the 2 Billion model. [37]

Figure 2.13: Architecture of Wav2Vec2-XLS-R, figure taken from [37]

The architectural design is equal to that of the Wav2Vec 2.0 model, with the no-
table difference being the corpora used for pre-training, as seen in Figure 2.13. 128
different languages in total are present in the dataset, compared to the previous
53 in the XLSR-53 model. These languages occur in varying degrees of size which
have been categorised by the authors into high-resource (>1k hours), mid-resource
(>100 hours) and low-resource (< 100 hours) and which can be seen in figure 2.14.
To combat this apparent unequal distribution, they used a sampling distribution
during training which first upsampled languages inside a corpus and then upsam-
pled the corpus itself by treating them like languages. [37]

Figure 2.14: Distribution of languages used during training in the Wav2Vec2-XLS-R
model, figure taken from [37]

As outlined in section 2.5 this model will be used as the basis for all of the experi-
ments done in this thesis.
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2.6 Language Models

Language models (LM) are an integral part of NLP by providing a mechanism that,
based on statistical and probabilistic methods, can give a probability that a sequence
of words is valid. In this context, validity does not necessarily mean grammatical
validity, but that the word sequence is valid on how a specific text could be written,
originating from the corpora that was used during training of an LM, which can
cause varying degrees of accuracy. Using LM during or after training has demon-
strated to be very beneficial for the predictions made by a model. Based on the
appendix C in the original Wav2Vec2 paper [16] this is also true for the models used
in this thesis.

Several implementations exist to create a LM like unigrams or a bi-directional ap-
proach. This thesis only uses the so-called n-gram approach, where n stands for the
number of words, letters, syllables, or phonemes in a sequence for which a probabil-
ity is calculated. Meaning that a 5-gram word model will look at word sequences of
5, for example: ”I love green tea with” and then ”love green tea with honey”, and
calculate the probability of the next word. Formalised, an n-gram model predicts
the probability P of a word xi based on the previous n words. [47]

P (xi|xi−(n−1), ..., xi−1) (2.6)

In the context of the previous example ”honey” would be predicted by using the
sentence ”I love green tea with” resulting in probability 2.7. Important to note is,
that the initial predictions provided by the preceding CTC model will not be perfect
as shown in this example, but will have missing letters or entire words resulting in
something like ”I lov green tea wif”, which the LM then tries to fix by applying
these probabilities. [47]

P (honey|I, love, ...,with) (2.7)

Words in an n-gram are never taken out of order to contain the accurate meaning
of the sentence for comparison. The reason for excluding the other methods is the
KenLM library [48] that will be used for training of the LMs in this thesis, because
of its fast and relatively cheap memory resource cost. [47]

2.7 Evaluation

Multiple evaluations metrics have been developed with each giving specific informa-
tion about its application area. Several metrics have to be introduced, as this thesis
will apply both Speech-To-Text translations (STT) and classification tasks.

2.7.1 Speech-To-Text (STT)

STT concerns itself with text-based evaluation for which two specific metrics are rel-
evant, namely word error rate (WER) and bilingual evaluation understudy (BLEU).
Important to note is that the resulting values of these metrics can vary greatly based
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on the data and target languages used during training. High-resource languages
like German and English consistently achieve good to very good scores, while low-
resource languages or dialects still fall far behind.

Word Error Rate (WER)

First is the word error rate, which works on a word level using the Levenshtein
distance and calculates a value between 0 and 1 by looking at the number of errors
made by the model and divides them with the total number of words. 0 means a
perfect alignment with the true label, while 1 means that there is no alignment.
Equation 2.8 formalises this with the dividends as errors containing substitutions S,
deletions D and insertions I with the total number of words N as divisors.

WER =
S + D + I

N
(2.8)

BLEU

BLEU [49] has become the de facto standard for STT evaluation tasks and is thus
an important metric to discuss. It is based on the comparison of n-grams which
have been explained in section 2.6. BLEU is calculated by multiplying the Brevity
Penalty with the Geometric Average Precision as seen in equation 2.9 and results
in a value between 0 and 1 where, in contrast to WER, 0 is the worst possible score
and 1 a perfect score.

BLEU = BrevityPenalty ∗GeometricAveragePrecision(N) (2.9)

The Geometric Average Precision is calculated by looking at N different n-gram
probabilities with an uniform weight wn = 1/N . N = 4 is typically used, which
means that the predictions made by the model are each looked at in an unigram,
bigram, trigram and 4-gram setting. They are then compared with the truth label
using a modified precision pn that is the sum of the clipped n-gram counts divided
by the total number of predicted words, formalised in equation 2.10.

GeometricAveragePrecision(N) = exp(
N∑

n=1

wn ∗ log(pn)) =
N∏

n=1

pwn
n

where pn =

∑
C∈Candidates

∑
n-gram∈C Countclip(n-gram)∑

C′∈Candidates

∑
n-gram′∈C′ Count(n-gram′)

(2.10)

The last element is the Brevity Penalty which penalises sentences that are too short,
to remove a possibility where unigrams could influence the predictions when a it is
just ”tea” or ”honey”, which could give a perfect score of 1 / 1 = 1. By using a
parameter predicted length c and target length r, the penalty ensures that the value
is never over 1. If the predicted sentence is too short compared to the target, the
penalty will lower the value and thus lowering the BLEU score. A predicted length
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of c = 10 and target length r = 10 will cause a Brevity Penalty of 1, as seen in
equation 2.11.

BrevityPenalty =

{
1, if c > r

e1−r/c, if c <= r
(2.11)

The interpretations of BLEU are often difficult to grasp, as objective good results
appear between 0.6 and 0.7 while a score of 1.0 is often a sign of overfitting instead
of a good score. Meaning the system could not be used in a different setting with
never before seen data. BLEU is often normalized to the scale of 0-100 because it
is not a percentage based metric. Table 2.1 summarises the interpretation of the
scores.

BLEU (normalized) Interpretation

< 10 Almost useless
10 − 19 Hard to get the gist
20 − 29 The gist is clear, but has significant grammatical errors
30 − 40 Understandable to good translations
40 − 50 High quality translations
50 − 60 Very high quality, adequate, and fluent translations
> 60 Quality often better than human

Table 2.1: BLEU interpretation, table taken from [50]

2.7.2 Classification

Classification uses a set of evaluation metrics that aim at giving insight into the
different classes that are being classified by the model. In this thesis, F1-Score
will be the main evaluation metric as there are no binary class setups which would
benefit from the accuracy metric.

Precision and Recall

Precision or confidence is used to provide insight into the proportion of positive
identifications that were correctly classified by the model. The metric returns a
value between 0 and 1, where 1.0 would be a perfect score as formalised in 2.12. [51]

Precision =
True Positive

True Positive + False Positive
(2.12)

Recall is used to describe the proportion of actual positives that were identified
correctly which can be seen in equation 2.13.

Recall =
True Positive

True Positive + False Negative
(2.13)
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F1-Score

Precision and recall are only relevant when taking both into account at the same
time. However, as they are often in an inverse relationship to each other, a different
metric has to be used - the F1-Score. It uses a harmonic mean over precision and
recall to combine the two metrics into one by definition of equation 2.14. [51]

F1 = 2 ∗ Precision ∗Recall

Precision + Recall
(2.14)

Macro F1-Score

The above-mentioned equation is only valid in a binary setup. Multi-class setups
need a so-called Macro F1-Score, which is calculated by using a macro average
precision, equation 2.15, and a macro average recall, equation 2.16, where K is the
amount of classes present during the calculation. The formula for precision and
recall stay the same as in equations 2.12 and 2.13 but are summed up and then
divided by the K classes. [51]

MacroAveragePrecision =

∑K
k=1 Precisionk

K
(2.15)

MacroAverageRecall =

∑K
k=1Recallk

K
(2.16)

The macro F1-Score is then calculated by using these averages in the formula 2.17.

Macro F1 = 2 ∗ MacroAveragePrecision ∗ MacroAverageRecall

MacroAveragePrecision + MacroAverageRecall
(2.17)

Weighted F1-Score

Since multi-class setups can have unequal data distribution, a third F1-score has
to be introduced. This is the weighted F1, which takes the size of each class into
account during the calculation of Precision and Recall. The number of samples is
denoted as nk in equation 2.18 and 2.19. [51]

WeightedAveragePrecision =

∑K
k=1 Precisionk ∗ nk∑K

k=1 nk

(2.18)

WeightedAverageRecall =

∑K
k=1Recallk ∗ nk∑K

k=1 nk

(2.19)
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The F1 is then calculated using the weighted precision and weighted recall in the
same manner as the default F1 or macro F1.

Weighted Average F1 = 2 ∗ WeightedAveragePrecision ∗ WeightedAverageRecall

WeightedAveragePrecision + WeightedAverageRecall
(2.20)
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Chapter 3

Data

3.1 Overview

The data used for the pre-training and experiments stem from various sources. Cor-
pora that are specifically created for ASR purposes are labelled and can be used
during fine-tuning. While others, such as parliamentary data, are simply recordings
of proceedings for documentation purposes and may be accompanied by written
reports. However, if they are to be used as labelled data, they have to be further
processed, for example by breaking the audio down into individual sentences and
cutting the recordings in a manner so that they are aligned with the texts. Not pub-
licly available data or data that would need special licensing were provided by the
Centre for Artificial Intelligence (CAI) at ZHAW. The distribution of the different
datasets is illustrated in Figure 3.1

Figure 3.1: Speech hours per dataset
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A minor side task of this work is to collect speech recordings from open sources such
as TV and radio broadcasts or parliamentary reports. The aim is to increase the
amount of unlabelled data available to pre-train ASR models. To this end, data
from the Schweizer Radio und Fernsehen (SRF) from webcrawling (CH) collection
were extracted with a web crawler from the website of the SRF [52] broadcaster.

3.2 Corpora

CommonVoice [53] is a collection of transcribed speeches containing 93 languages.
With a total of more than 20’000 hours (validated nearly 15’000) of recordings. The
German language in the V7.0 corpus consist of 965 validated hours and is the largest
dataset used in this thesis. Metadata, besides the text of the sentence itself, include
age group, gender and accent.

The dataset Parlament Einwohnerrat Allschwil comprises 100 hours of audio
recorded in the local council of the municipality of Allschwil BL, with a predomi-
nance of the Basel dialect.

The Parlament Einwohnerrat Wohlen consists of approximately 250 hours of
recordings of the local council of the municipality of Wohlen AG. The most widely
spoken dialect in the dataset is that of AG and accompanied by the recordings there
are also official transcripts/reports.

Parlament Kantonsrat Appenzell Ausserrhoden is a collection of recordings
of the cantonal council of Appenzell Ausserrhoden with a linguistic predominance
of the AR dialect. It includes approximately 120 hours of speeches that are auto-
matically aligned to Standard German text data on sentence-level.

The dataset Parlament Kantosrat Obwalden includes just over 290 hours of
audio recorded in the Obwalden cantonal council mostly in its OW dialect. The
speeches are automatically aligned Swiss German to Standard German text data on
sentence-level.

The Parlament Stadtrat Bern is a dataset with recordings from the Bern City
Council. It consists of 700 hours of speeches with a predominance of the BE dialect.
The speeches are automatically aligned Swiss German to Standard German text
data on sentence-level.

The SDS-200 (Schweizer Dialektsammlung) [5] is a dataset containing several Swiss
German dialects with their respective transcriptions in standard German. It is the
first Swiss German corpus that contains speech samples from all over Switzerland
with a data distribution that generally represents the Swiss population (see figure
3.2). Outliers are the cantons of ZH and VS which are over-represented.
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Figure 3.2: Figure taken from [5]

It consists of raw data (188.9 hours) and filtered data (178.3 hours). The filtered data
is passed through a validation process to ensure high quality, while the raw data re-
mains in the dataset in case different filtering criteria are to be applied. The dataset
already provides splits for validation (5.2 hours) and testing (5.4 hours). These are
selected to ensure that only validated data are present in the validation/test splits
and to have a good variety, speakers with between 5 and 200 recordings. It is also
guaranteed that speakers are only present either in the training splits or in the val-
idation/test splits. In addition to the transcription in standard German and the
dialect, the age group and gender of the speaking person are also indicated in the
metadata.

SRF from webcrawling - Around 3000 hours of podcasts were extracted from the
SRF website [52] using webcrawling that automatically downloads publicly available
data from the website. The audio was then assigned into three different categories
according to the language spoken in the podcast: CH, DE and Mixed (CH+DE).
The separation was done manually by skipping through up to 10 random episodes
of each podcast to ensure that they could generally be assigned to one of the three
categories. DE and Mixed have 401 and 1812 hours of audio respectively, while the
most important CH category comprises 741 hours. Of these three, only the data in
CH were used for the experiments in this thesis. Before the samples could be used
in the pre-training setup, they had to be pre-processed to remove unwanted parts
of the podcasts such as music, noise or special effects; and thus only obtain audio
containing people speaking. To do this a script was written which, given a folder
of raw files, starts by converting the audio format from MP3 to WAV. Each file is
then sent to Spinningbytes’ internal Voice Activity Detection service which returns
a .json file indicating when someone is actually speaking. The script then cuts the
parts with the voice out of the .wav file and breaks it down further into segments
between 2 and 10 seconds. This operation cut approximately 32 hours in the CH
dataset resulting in 708 hours of usable audio.
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The SwissDial [54] was created by ETHZ and consists of 36 hours of audio recorded
in 8 different Swiss German dialects (AG, BE, BS, GR, LU, SG, VS, ZH). All dialect
share the same German sentences, which had to be translated into their respective
dialect. The metadata thus includes the same sentence several times, in both Stan-
dard German and translated into the dialects for which it was actually recorded.
Additionally, the topic of the sentence is provided.

The SNF Testset v0.2 consists of nearly 35 hours of recordings in the different
Swiss-German dialects and their respective transcriptions. In addition to the canton,
the metadata also includes, but is not limited to, sub-region, age and gender.

Figure 3.3: Entries per cantons of the SNF Testset v0.2 dataset
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Chapter 4

SwissText Shared-Task

While writing this thesis, the opportunity presented itself for us to partake in the
SwissText hosted ”2nd Swiss German Speech to Standard German Text” shared
task [6]. We were invited by our supervisors to enter the best performing models
into the competition to test their capabilities in a competitive setting.

4.1 Objective

The aim of the shared task is to create a system that can translate Swiss German
dialects into Standard German. Evaluation is conducted on a special dataset con-
taining 5 hours of the Graubünden dialect. Restrictions are in place concerning the
corpora allowed to be used during training for a fair contest, which are listed below:

• SDS-200 [5]

• SwissDial [54]

• CommonVoice (DE, FR, IT) [53]

• Evaluation dataset

All corpora have been described and analysed in Chapter 3. For CommonVoice the
three languages of German, including a small subset of dialects, French, and Italian
are permitted to be used.

4.2 Evaluation

BLEU is used as the evaluation metric (see section 2.7) and the data is separated
between a public and private split, with the private split only being revealed after
the submission deadline. The team achieving the highest score on the private split
wins the competition. Both splits contain 50% of the evaluation data to remove
the possibility of participants overfitting on the public split. Evaluation vocabulary
is limited to numbers and lowercase characters. The organizers supplied a baseline
model that has to be beaten. The BLEU score of this model on the public split is
0.7044.
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Chapter 5

Experimental Setup

5.1 Objective

As mentioned in Chapter 1, the thesis and its experiments aim to determine the
impact of adding additional pre-training data to an existing pre-trained model for
a specific language or dialect group. We specifically want to test this thesis by ap-
plying a multitude of Swiss German datasets to the Wav2Vec2-XLS-R model. By
submitting our results to the second Swiss German translation shared task hosted
by SwissText [6], we seek to test the model’s capabilities in a competitive setting.

Allowing for a more complete overview of the model’s abilities, we apply two differ-
ent categories of experiments: STT translation and speech classification. For STT
translation, we want to determine if the translation of the different Swiss German
dialects into Standard German improves. Classification aim at understanding the
different relations of the dialects and compare the results the our previous work done
in the scope of a project thesis. The impact of the pre-training will be explored as
well.

5.2 Infrastructure

The primary infrastructure provided by ZHAW includes four GPU instances on the
ZHAW APU OpenStack cluster, with each instance having access to 16GB RAM, 8
vCPUs, and an NVIDIA Tesla T4 with 16GB DDR6. A total of 5TB was allocated
for data. For technical reasons, it was not possible to use multiple graphics cards
together for experiments. Some tasks were carried out on the DGX-1 (NVIDIA Tesla
V100-SXM2-32GB) and DGX-A100 (NVIDIA Tesla A100-SXM4-40GB) servers, to
which we did not have direct access and therefore had to pass through our secondary
supervisor. The addition of A-100 instances was a significant milestone during this
thesis as the training duration of our pre-train models was reduced by up to 90%
from initially 8 months to just 3 weeks.
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5.3 Corpora

We aim at utilizing all in Chapter 3 mentioned Swiss German corpora in their respec-
tive area of application, as shown in Table 5.1. One exception is the CommonVoice
corpus for German, which is used for an experiment where both Swiss German and
Standard German speech are used to pre-train a model. Looking at the column
”Purpose”, one can identify if a corpus is unlabelled or labelled. STT translation
and classification apply labelled corpora while pre-training uses unlabelled corpora.

Dataset Name Language Dialect Hours Purpose
CommonVoice v7.0 (DE) DE None 965 Pre-Train
Parlament Einwohnerrat Allschwil CH Mainly BL/BS 100 Pre-Train
Parlament Einwohnerrat Wohlen CH Mainly AG 250 Pre-Train
Parlament Kantonsrat AR CH Mainly AR 121 Pre-Train
Parlament Kantonsrat OW CH Mainly OW 292 Pre-Train
Parlament Stadtrat Bern CH Mainly BE 700 Pre-Train
SRF (CH) CH Mixed 708 Pre-Train

SDS-200 CH Mixed 189
STT &

Classification
SwissDial CH Mixed 36 STT
SNF Testset v0.2 CH Mixed 35 STT
Total hours used 3482

Table 5.1: Corpora used for training

A special SDS-200 split was created for the classification task using a setup that we
used for the project thesis, which closely imitates the original split performed by
the authors. It was necessary, because the original split was done with STT in mind
instead of classification and as such had samples with no canton in their metadata.
We applied a 80/20 split for training and test data with samples that had a canton
assigned to them. Speakers were only presented in either test or train and a general
validity control was applied with users having a mean quality lower than 0.5 being
dismissed. Samples with no quality were still included to allow a certain degree of
real-world applicability where audio can have varying degrees of quality.

Important to note is that the SwissDial corpus [54] was only added at the beginning
of May 2022 when we were invited to participate in the SwissText shared task. All
trainings started before that time frame thus do not contain any data from this
corpus.

5.4 Pre-Processing

The in 5.3 discussed corpora have to be pre-processed for further use downstream
in training. We employed the same strategy for all datasets to have a standardized
pipeline during training when adding new data. This generally includes a conversion
to the WAV audio format and re-sampling the audio to 16kHz. The data is then
stored in the HDF5 hierarchical data format using the h5py Python library [55],
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with which vast reductions in memory usage can be achieved. Some differences
exist between labelled and unlabelled corpora which will be addressed now.

5.4.1 Labelled

The transcripts of the labelled data had to be stored in a way that is both efficient to
read during training and structured for assignment to the correct sample. Sentences
and classifications were thus written to metadata files which were read and parsed
for their assigned samples during the respective training.

5.4.2 Unlabelled

The data used for pre-training was often not in a format usable for training. Most
audio files were provided as podcasts or meetings which last between 30 minutes
and multiple hours. Reading multiple such files would lead to a memory overflow
during training. As such, the data had to be cut into audio samples of between 2 and
10 seconds. The cuts were performed using Voice-Activity-Detection and did not
adhere to sentence structures, so the resulting audio samples were sliced at random
points during a speech.

5.5 Model Selection

Based on the promising results of the Wav2Vec2-XLS-Rpaper [37], a decision was
made to use this model. Multiple XLS-R versions exist, namely the 300M, 1B, and
2B models. The numbers refer to the amount of trainable parameters each model
possesses. Training duration scales based on these parameters, with the smallest
300M having the fastest and the largest 2B model the slowest training. Concerning
the limited time frame in which this thesis has to be completed, the decision was
made to primarily use the 300M model. During the writing of the thesis, an opportu-
nity arose to apply the 1B model in a limited framework as well, owing to the section
5.2 described addition of A-100 GPUs for further computational power. The mod-
els are available through the transformer python library [56] hosted by HuggingFace.

The models were released in November 2021 and compared to its XLSR-53 prede-
cessor, only a fraction of research has been released thus far. As such, not many
fine-tuned models are available on HuggingFace [56] for further downstream tasks,
like the ones applied in this thesis. Owing to this, only the base models can be
considered being used.

For the classification task, a reference model that is based on the XLSR-53 architec-
ture will be utilized. As outlined in section 5.1, this is done because this dissertation
is a continuation of a project thesis. By comparing the model to our results, we hope
to gain valuable insight into the capabilities of the XLS-R model and our additions
during the pre-training task.
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5.6 Language Model

Two models based on the KenLM library [48] are applied, with both having a dif-
ferent purpose. The first model ”LM-Wiki” is a 5-gram model where n-grams are
pruned if they occur less than 5 times and is trained on a German Wikipedia corpus.
The second ”LM-CC-100” model is based on a subset of the German CC-100 corpus
[57][58] and is a 5-gram model that prunes n-grams occurring less than 3 times. The
reason for the difference in pruning is the increased size of the LM-CC-100 model,
which would have increased even further if pruning of less than 5 was to be applied.
An additional difference is the vocabulary used in these models. While the LM-Wiki
uses punctuations, numbers, and characters that are both upper- and lowercase, the
LM-CC-100 only comprises numbers and lowercase characters. This separation was
needed for the SwissText shared task as described in Chapter 4.

Several hyperparameters have to be defined during evaluation with the LM. Based
on tests with multiple models, a decision was made to use the values listed in Table
5.2. Reranking is done using a German GPT2 model. Some parameters have to be
explained:

• Hyp rerank: Amount of top-n hypotheses the GPT-2 model reranks

• Beam size: Size of beam search width

• Alpha: weight for the LM during shallow fusion

• Beta: a constant weight for length score adjustment during scoring

Parameter Value

Hyp rerank 200
Beam size 800
Alpha 0.5
Beta 1.0

Table 5.2: Language model evaluation parameters

5.7 Metrics and Evaluation

To evaluate the translation experiments, the in section 2.7 mentioned WER and
BLEU metric are used. Classification experiments are evaluated according to the
F1 score. These metrics allow for a sufficiently exhaustive method of comparing
results. The tool used to keep track of the experiments is Weights & Biases [59],
which has a convenient interface for displaying graphs, logs and metrics.
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5.8 Training Details

This section aims to provide insight into the most important hyperparameters for
each experiment and the reasoning why the specific values were chosen. Important
to note is that parameters differ for the experiments based on both infrastructure,
models, and standard values defined by the NLP community.

5.8.1 Pre-Training

For pre-training, the most important difference is the batch size and gradient accu-
mulation with which the amount of data a GPU is processing at any given time can
be controlled. We aimed at applying 1h of audio data per GPU, which corresponds
to the values seen in table A.2.

Instead of using training epochs as a fixed training duration, we defined a value to
be large enough that our goal of 120k to 150k global steps could be reached. The
reason for this specific amount of steps is a blog post [60], on which our code base
relies on, by the HuggingFace research engineer Patrick von Platen, where the same
amount of global steps were applied. By imitating this number, we can draw a
comparison between his and our training progress. All mentioned parameters are in
Table A.2 in Appendix A.

5.8.2 STT Translation

As STT experiments were performed on weaker GPUs than the pre-training models,
both the batch size and gradient accumulation steps had to be reduced to 4 and
8, respectively. The learning rate was set at 3e−5 with 100 warmup steps and 25
training epochs. The parameters can be viewed in Table A.3 in Appendix A

5.8.3 Classification

Compared to the STT experiments, the save steps and evaluation steps parameter
changed from 2000 to 1000 and 1000 to 500, respectively. The reason for this is
the reduced training duration of the classification tasks because labelled data is
available. The values are displayed in Table A.4 in Appendix A.

5.9 Trainings

This section will summarize the different trainings performed in this thesis. By
explaining the setups, the planned comparisons, and the corpora used for each of
them, a sufficient understanding should be able to be achieved.

5.9.1 Pre-Training

As outlined in Chapter 1 and section 5.1, we aim to apply and measure the impact
of additional pre-training data on the Wav2Vec2-XLS-R architecture. Most down-

39



5.9. TRAININGS CHAPTER 5. EXPERIMENTAL SETUP

stream tasks in STT and classification rely on these additions before their respective
training can be started.

Figure 5.1: Addition of Swiss German data to the Wav2Vec2-XLS-R architecture

Three models are trained for this task, comprising two 300M models and one 1B
model. The difference in the XLS-R-300M’s is the addition of Standard German
data to the pre-training for one of them. This should provide an additional option
for comparison in the downstream tasks. Both the 300M ”CH-Pretrain-300M” and
1B ”CH-Pretrain-1B” Swiss German models will apply 2171 hours of Swiss German
data, as visualized in 5.1, while the training for the mixed CH-DE 300M model
”CH DE-Pretrain-300M” will comprise 3206 hours. Both 300M models were first
trained on the DGX-1 cluster before being moved to the A-100 instances for faster
training. Figure 5.2 provides an extensive overview of the three models.

Figure 5.2: Setup for pre-train models

The training will use the ”Wav2Vec2ForPreTraining” class of the transformer library
[56] and is based on the code base of Patrick von Platen at HuggingFace [60].
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5.9.2 STT Translation

The primary evaluation mechanism for the pre-trained models are the STT trans-
lation experiments from Swiss German into Standard German. The reason for this
translation is that Swiss German does not adhere to any grammatical or vocabulary
standards. Speakers of this language freely choose on how they write and speak
based on the region they grew up in. After translating Swiss German speech to
Standard German we can then apply the set of grammatical rules set out by Stan-
dard German to standardize the dialects into one form. This enables us to both
compare the dialects better and to use existing German systems that have been
optimized throughout the years for a better prediction. The ”Wav2Vec2ForCTC”
class of the transformer library [56] will be used for this task. By adding a KenLM
model to the fine-tuning process, we aim to improve the translations.

Figure 5.3: Addition of KenLM models to fine-tuning to improve translations

Multiple translation experiments will be performed, as illustrated in Figure 5.4.
An explanation has to be given to understand the naming convention of the dif-
ferent experiments. As an example ”CH-STT-FromPretrain-300M-75k” is based on
the Swiss German 300M pre-train model and uses a checkpoint at 75k global steps
which corresponds to 50% of the training progress.

Two additional models were added for the SwissText task, denoted with ”Limited-
Vocab”, which only used lowercase characters and numbers for their prediction to
match the allowed characters set out by the taskmasters [6]. Owing to this, the
LM-CC-100 will be used instead of the LM-Wiki, as outlined in section 5.6
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Figure 5.4: Setup for STT models

Because of the limited time frame and computational power, various experiments
had to either be removed or reduced in their capacity. Owing to this, only the
”300M-Full” model could be repeated to reduce evaluation variation error. We
recognise, however, that these are not sufficient repetitions to fully remove said
error. Additionally, the CH DE model could only be used once in STT. In the
same essence, multiple models only evaluated on the SNF corpus to reduce training
duration.

5.9.3 Classification

The classification task is based on an experiment performed in the project thesis
”Automatic Detection of Swiss German Dialects using Wav2Vec” of which this the-
sis is a continuation. This setup achieved the highest evaluation score with a macro
F1-score of 45.95% by grouping the cantons based on their regional proximity and
linguistic similarity.

Analysis of the different dialects in [61] showed that the ”Ostschweizer Dialekte” in
the east of Switzerland were historically more closely related to each other than to
the dialects in the central region. The central cantons of Aargau, Lucerne, Zug and
Zurich have been described as ”Übergangsmundart Kantone” in which influences of
both eastern and western dialects can be found. A separation was discovered based
on the so-called ”Brünig-Napf-Reuss” line shown in Figure 5.5, which separates east
from west. Western dialects work similarly to the eastern dialects in that they are
closely related to each other and can be grouped for classification.
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Figure 5.5: Brünig-Napf-Reuss line in red, High-Alemannic area in yellow, figure
taken form [62]

The last group contains cantons of both the ”Innerschweiz” to which Glarus, Schwyz,
Uri, et al. belong and the special Highest-Alemannic dialect found in the canton of
Valais. All these cantons have low amounts of data available for training and were
thus grouped together. While this may not be the most beneficial, owing to the
Valais dialect, which is not related to the dialects found in the Innerschweiz, they
still had to be clustered into a class that had enough data to support them during
the classification task.

Four distinct groups are thus created, shown in Figure 5.6, with the Eastern-High-
Alemannic dialects (EA) in blue, the Central-High-Alemannic dialects (CA) in yel-
low, the Western-High-Alemannic dialects (WA) in green and the Highest-Alemannic
dialects (HA) in red.

Figure 5.6: Four regional dialect groups
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Table 5.3 provides insight into the data distribution of the different clusters. As
mentioned above, the red HA group has the lowest amount of resources available
for training. The CA region comprises around 50% of all available data owing to
the fact that Zurich is the most populous canton in Switzerland and, as outlined in
Chapter 3, attributes to 40% of all samples in the SDS-200 corpora.

Nr. Name Abbrev. Cantons Training sample size

1 Highest-Alemannic HA GL, NW, OW, SZ, UR, VS 5814
2 Western-High-Alemannic WA BE, BS, BL, FR, SO 19237
3 Central-High-Alemannic CA AG, LU, ZG, ZH 37967
4 Eastern-High-Alemannic EA AI, AR, GR, SG, SH, TG 12465

Table 5.3: Regional dialect groups definition

The in Figure 5.7 shown experiments are similar to the STT experiments with the
exception of a model that uses one of the STT models as its base, denoted as
”FromSTTPretrain”. It allows us to make a more valid comparison with the XLSR-
53 model from the project thesis. There, a on Swiss-German fine-tuned STT model,
provided by the University of Applied Sciences Northwestern Switzerland (FHNW)
[22], was used as the base model, which at the time improved the F1-score by up to
15%.

Figure 5.7: Setup for classification models

The code implementation uses the ”Wav2Vec2ForSequenceClassification” class in
the transformer library [56] and employs a dimensionality of 1024 for the encoder
and projection layer.
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Chapter 6

Results

This chapter analyzes the results gained by the pre-training, the STT translation
and classification experiments, and the SwissText shared task. The results of the
STT translation were the primary factor on which the impact of pre-training was
examined. The classification was used for comparison between XLSR-53 and XLS-
R with the intention to gain insight into dialect identification. We will discuss the
main findings and assumptions further in Chapter 7.

6.1 Pre-Training

No evaluation metric could be used for pre-training, as the data used for training
was unlabeled. The loss function was taken instead as a substitution to analyze
if the model learned something during training. By comparing this graph to the
loss function of an example training by HuggingFace [60], we assured ourselves that
the training moved in the correct direction. Training duration for the models lay
between 22 and 29 days, with the 1B model taking the longest, relative to the global
step. The 300M models could have finished faster, but as they were first trained on
DGX-1 before being moved to the much faster A-100 instances, the duration was
pushed further up.

Model Training duration Global steps

CH-Pretrain-300M 29d 8h 130k
CH-Pretrain-1B 22d 14h 112k
CH DE-Pretrain-300M 24d 18h 154k

Table 6.1: Training duration of the different pre-train models

By comparing Figure 6.1 and Figure 6.2, we can discern that the models moved in
the same slight downward direction, which meant our implementation was successful
and the model was learning. The in section 2.5.7 discussed contrast and diversity
loss functions are illustrated as well. Important to note is that the example of
HuggingFace did not utilise an XLS-R model, but the monolingual Wav2Vec2-Large
model. The Figure can thus not be compared directly to our loss function but has
to be seen as a reference.
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Figure 6.1: Loss functions of HuggingFace example, figure created by Patrick v.
Platen using W&B, taken form [60]

Figure 6.2: Loss functions of the CH DE-Pretrain-300M model with smoothing
factor 0.8, figure created using W&B

6.2 Experiments

6.2.1 STT Translation

The translation experiments were the primary evaluation factor for the impact pre-
training has on the XLS-R model. We will separate the analysis for the 300M and 1B
models to display their capabilities. In each section, a figure will be presented where
the bold score represents the best BLEU for the given evaluation corpus compared
to the other models.

300M Models

300M models were primarily trained on the APU instances and each took around
2 weeks to train. The only exception was the LimitedVocab model, which was
trained on the DGX-1 and additionally evaluated on the SNF corpus. The results
are illustrated in Figure 6.3 and show that the base model generally beat all other
models. In the training evaluation, it reached the best score on the SNF with a
WER of 25.08% and a BLEU of 0.5704 and in the SDS-200 evaluation with an
LM a 21.56% WER and 0.6435 BLEU. The exception is the result of the LM SNF
evaluation in which the Full-2 model achieved a WER of 20.17% and 0.6519 BLEU.
This is surprising, considering that the Base model had a better evaluation on the
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SNF during training. We assume the SwissDial corpus, which only the Full-2 and
CH DE model could take advantage of during training, had a positive influence on
the model.

Figure 6.3: Results of 300M models in speech translation, left side is the training
evaluation, on the right the LM evaluation

This table also presents an additional finding with the CH DE model achieving the
second highest score on the SNF in both training and downstream LM evaluation.
The experiment was only performed once and thus can not be used for a complete
analysis of the impact Standard German has. Further experiments need to be per-
formed to give a definitive statement, but we can assume that the impact should
be positive based on the close linguistic relation that Swiss German and Standard
German share.

The last finding is the apparent reduction in scores of the pre-train models compared
to the base model, especially during training. When applying the Language Model
the scores increase in different manners based on the training predictions. This
would mean that pre-training has had a negative influence on the model instead
of a positive one. Before analyzing this further, the results of the 1B have to be
discussed.

1B Models

The 1B models were exclusively trained on the DGX-1 and A-100 instances to reduce
training duration. They trained for around a week before finishing, which is a 50%
reduction compared to the 300M models. The results depicted in Figure 6.4 show
a similar outcome to the 300M models where pre-trained models were performing
worse than their Base counterparts. Specifically, with 1B, the LimitedVocab model
performed well over all stages of evaluation. It reached the highest score of all
models in training, including the 300M experiments, with a 0.6249 BLEU on the
SDS-200. The addition of LMs increased the scores on the SNF evaluation set to
0.6889 BLEU and a WER of 18.08%.

Surprising compared to the 300M models is that the LimitedVocab model there did
not perform nearly as well as its 1B counterpart. This may be due to variation
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and should be analyzed further. We assume for the time being that the reduction
in vocabulary size helped the 1B-LimitedVocab during its predictions and thus had
higher scores than the other experiments.

Figure 6.4: Results of 1B models in speech translation, left side is the training
evaluation, on the right the LM evaluation

A different finding is the 1B experiments did not perform significantly better than
their smaller 300M equivalent. We assumed that, based on the three times larger
amount of trainable parameters, the model would reach much higher scores, but the
difference is only around 4 BLEU. We currently assume that these are hyperparam-
eter fine-tuning errors based on learnings during the SwissText conference, which
will be discussed in section 6.3.

6.2.2 Classification

Comparison model

Before discussing the results of the XLS-R model, we have to provide context for the
reference XLSR-53 model of the project thesis. The model used a STT fine-tuned
model hosted on HuggingFace and provided by FHNW [22], which was then adapted
to the classification task. During the evaluation, the model reached an accuracy of
52.89%, a macro F1-score of 45.95%, and a weighted F1-score of 0.5. The best group
was the EA region with an F1 of 0.65, while the worst was the HA region with a
score of 0.13. The predictions made by the model have been illustrated in Figure
6.5 and an overview of the scores are provided in Table 6.2
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Figure 6.5: Confusion matrix of regional dialects in the project thesis

Region Precision Recall F1-score

EA 0.62 0.69 0.65
CA 0.44 0.48 0.46
WA 0.53 0.67 0.59
HA 0.42 0.08 0.13

Table 6.2: Precision, Recall and F1-score of comparison model

XLS-R-based Models

Four experiments were run for the classification task with one base model as a com-
parison and three FromPretrain models. One of the pre-train models used an already
fine-tuned model from the STT experiment as its base hoping to increase the eval-
uation scores, similar to the XLSR-53 comparison model. CH-STT-FromPretrain-
300M-Full-1 had been selected as the base because it was the first of the two Full
models to finish fine-tuning. However, as it also used SDS-200 for its training we
suspected that the downstream classification training may overfit during training
and had to be monitored as such. The models were exclusively evaluated on the
SDS-200 test set containing 13644 samples. While the size of SDS-200 has increased
since the project thesis, a general comparison should still be able to be made. The
results are depicted in Figure 6.6.

49



6.2. EXPERIMENTS CHAPTER 6. RESULTS

Figure 6.6: Results of the classification

The best model was CH-Classify-FromSTTPretrain-300M-Full which used the CH-
STT-FromPretrain-300M-Full-1 fine-tuned Swiss German model as its base and
achieved an accuracy of 52.45%, a macro F1-score of 44.38%, and a weighted F1-
score of 0.49. The XLSR-53 comparison model could thus not be beaten by 1%.
Contrary to the STT models, the base model was outperformed by all pre-train
models by up to 9% macro F1 and 11% weighted F1. Based on these findings a
closer inspection of the FromSTTPretrain model has to be made.

Looking at the results in Table 6.3 one can discern that some regions improved
while others worsened. The already strong EA region increased to a F1 of 0.68 in
the XLS-R experiment from the initial 0.65 in the XLSR-53 while the HA region
decreased to 0.09 F1 compared to 0.13 by the reference model.

Region Precision Recall F1-score

EA 0.70 0.66 0.68
CA 0.39 0.78 0.52
WA 0.63 0.40 0.49
HA 0.45 0.05 0.09

Table 6.3: Precision, Recall and F1-score of CH-Classify-FromSTTPretrain-300M-
Full

Analyzing Figure 6.7 enables a better understanding of the false predictions the
model made. The Eastern-Alemannic region has again largely been successful in
being recognised by the model. Most erroneous predictions were due to the CA
region, which makes sense considering the proximity of the two regions.

CA was most often confused with the WA region. This was prone to occur, consid-
ering the in section 5.9.3 outlined difficulty of separating the cantons of the central
region into east and west. Achievements could be made here by splitting the di-
alects not based on cantons but on a zip-code level, which would allow for a better
allocation to the east or west.
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The scores of the WA worsened compared to the XLSR-53 model from 0.59 to 0.52,
with an equal distribution of mistakes in both EA and CA. This is surprising because
the regions of WA and EA are not near each other and are linguistically distinct.

Figure 6.7: Confusion matrix of FromSTTPretrain model regional classification ex-
periment

In last place is the HA region, which had the most difficult task of all regions con-
sidering the low sample size and the linguistic dissimilarity of the dialects. While a
low score was expected the result was nonetheless surprising as it was reduced even
further from the initial 0.13 in the comparison model to 0.09 in the XLS-R. Maybe
an equal setup of samples would help this region, but as most data originates from
the canton of Valais, the issue would probably persist. A decision has to be made in
the future for the dialects in these cantons if they should either be integrated into
the CA and EA region based on their proximity to them or be ignored for the time
being until further data collection has been performed.

Lastly, looking at Figure 6.8 one can discern that the model was at its best during
the beginning of training. This should not be the case in a normal training setup,
however, as the model was trained on the SDS-200 in both the STT and classification
task we assume that this is due to model overfitting on the data and not learning
anything new. During the training of the XLSR-53 this was not the case as the base
fine-tune model was trained on a different corpus, namely the Swiss Parliaments
Corpus [63]. Thus an experiment should be made in future work which applies
different corpora to demonstrate XLS-R’s capabilities.
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Figure 6.8: F1 and accuracy scores over time

Evidently, this still does not explain the difference in rankings of the Base and
pre-train models compared to the STT experiments. A variation could be a factor
in this setup as the two Full models differed by up to 2% weighted F1. However,
the difference between the Base and Full models is at best 5% F1, which is too
high considering the variations in the STT experiments. More research has to be
conducted to give an informed decision on what the source of this contradiction is.

Figure 6.9: Classification results of precision, recall, and F1-score for the regions
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6.3 Shared Task SwissText

All STT models that had finished training before the submission deadline on the
30th of May 2022 were sent to the shared task for evaluation. As outlined in Chapter
4, the evaluation was performed in a public and private split, with each of the splits
containing 50% of the 5 hours of Graubünden dialect data. The private split was
used to define the rankings of each participant’s best-performing model. The results
of the different STT models on the public split are displayed in Table 6.4. Our best
model was the Base-1B model with a BLEU of 0.6838 and as such could not beat
the baseline, which had a BLEU of 0.7044. Regrettably, the LimitedVocab models
were not ready at the submission deadline, which meant that our models had a more
difficult task predicting the translations. This is because the normal models had to
decide between 91 characters compared to the limited models which would have only
had to differentiate between 45 characters.

Model BLEU score

CH-STT-Base-1B 0.6838
CH-STT-Base-300M-800Beam 0.6825
CH-STT-FromPretrain-1B-Full-1 0.6778
CH-STT-FromPretrain-1B-75k-800beam 0.6659
CH-STT-Base-300M 0.6724
CH-STT-FromPretrain-300M-Full-2 0.6615
CH-STT-FromPretrain-300M-75k 0.6457
CH-STT-FromPretrain-300M-Full-1 0.6371

Table 6.4: Our results on the SwissText public split

Some models in Table 6.4 have the suffix ”800Beam”. This refers to the beam
search width during the LM evaluation, which was increased from initially 200 to
800 after consultation with our supervisors. The change increased BLEU scores by
1-2 normalized points and was thus used as the default setting for all further LM
applications.

In total, apart from the organizers at FHNW and their baseline model, two partici-
pants entered the competition. The second group was part of the AXA corporation
and used the same Wav2Vec2-XLS-R-1B model but without a LM to improve the
translations. Rankings are displayed in Table 6.5 for the public and private split,
respectively. We ranked first in both splits when discounting the baseline as a sub-
mission.

Submission Public score Private score

FHNW Baseline 0.7044 0.701
ZHAW Wav2Vec2 0.6838 0.681
AXA Wav2Vec2 0.5571 0.5532

Table 6.5: Ranking of participants submissions
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The organizers of FHNW developed a separate Transformer based model, which was
presented during the conference. Pre-training was performed using the in Chapter
4 defined datasets. After fine-tuning the model on both SDS-200 and SwissDial,
they applied a KenLM model, which was heavily trained on texts used in different
parliament speeches. This gave them a small advantage over the submissions, as
their data matched the source of the training data. The exact implementation will
be released in the SwissText 2022 proceedings paper.

6.3.1 LimitedVocab model

Since the LimitedVocab models were not ready for submission but finished before
the SwissText conference was held on the 8th of June 2022, we decided to still
include the models performances on the public evaluation split. Compared to the
normal models, the LM-CC-100 was used instead of the LM-Wiki, as outlined in
section 5.6.

Submission BLEU score

CH-STT-Base-1B-LimitedVocab 0.7001
CH-STT-Base-300M-LimitedVocab 0.6472

Table 6.6: LimitedVocab evaluation scores public split

The 1B-LimitedVocab beat the 1B-Base from 0.6838 to 0.7001 BLEU, as shown in
Table 6.6. While the model did not beat the baseline as well, reaching 70 normal-
ized BLEU is still a large achievement for Swiss German speech translation. The
increase by 1.3 BLEU compared to its normal performance on the SNF corpus was
surprising however and can be grounds for discussion. A first interpretation uses the
results gained during classification, which show that Wav2Vec models can recognise
dialects in the eastern region of Switzerland particularly well. With the evaluation
data originating from Graubünden, which is also in the east, this could mean that
the model generally creates better translations for this dialect. It also shows the
impact prediction vocabulary can have on a model’s performance.

However, the 300M-LimitedVocab lost evaluation points compared to the 300M-
Base from 0.6825 to 0.6472, which can only be explained by the model’s general
low performance, as illustrated in Table 6.3. Retraining a separate model with
different hyperparameters would be interesting in future work to analyze the model’s
capabilities.

6.3.2 Learnings

Both the 300M and 1B pre-train models were beaten by the base XLS-R with the
scores being noticeably lower in the pre-train models (see Table 6.4). Surprising
was also that the base 300M model scored higher than the 1B pre-train models.
Valuable input was provided during the discussion at the SwissText conference by
the participants concerning this apparent issue. Three different approaches were
discussed:
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A: Apply the pre-training at the same time with the complete 436k hours of the
XLS-R model

B: Better tuning of hyperparameters during fine-tuning

C: Create a monolingual Swiss German pre-trained Transformer model

Option A was discussed as a potential source for issues when training an already
pre-trained model with additional data. The consensus was that the model could be
prone to erroneous learnings when applying additional language data at a later time
than the rest of the training data. By training a model from scratch with the Swiss
German data, in addition to all corpora mentioned in the XLS-R paper [37], the
model could learn the speech representations in a more generalized fashion. It was
noted, however, that the computational resources required for such training are not
available to any of the interested participants and as such cannot be investigated
further.

The team of FHNW proposed option B, arguing that they had internally applied
identical fine-tunings on the XLS-R-1B model as our CH-STT-Base-1B, but were
able to achieve a BLEU of 0.72. As was the case with their baseline model, they
used a LM that was applied after the initial training to reach said score.

Option C was proposed by both FHNW, as their baseline model already did these
steps to a certain degree, and us, referring to the success the monolingual Wav2Vec
2.0 model had on the English language. By imitating a similar setup, we think
improvements could be achieved on the translation task for Swiss German to Stan-
dard German. However, we also recognise that the required data would first have to
be collected and processed. Acquiring such large quantities of data would have to
be done in cooperation with media corporations that naturally have access to such
data.
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Chapter 7

Discussion and Outlook

Various experiments on Wav2Vec2-XLS-R have been conducted in the scope of this
dissertation and as a result two systems can now be presented. The first is a STT
translation system from Swiss German into Standard German. The CH-STT-Base-
1B-LimitedVocab model achieves the best results with a 18.08% WER and 68.86
BLEU on the “SNF” test corpus and 68.05 BLEU on the “SDS-200” test split with a
WER of 19.28%. A different model, the CH-STT-Base-1B, helped us reach first place
in the SwissText “2nd Swiss German Speech to Standard German Text” shared task
with a BLEU of 68.1 points on the private evaluation split. This 1B-LimitedVocab
had not finished with training before the submission deadline could thus not be sent
for evaluation. Later evaluation on the public split returned a BLEU of 70.01. The
goal of creating a high-functioning translation system has thus been reached.

The second system is a classification model for the various Swiss German dialects,
which categorised them into four distinct regions. The model achieves an overall
weighted F1-score of 0.49, with the Eastern-Alemannic dialect region performing
the best with a weighted F1 of 0.68. The model thus demonstrates an ability to
differentiate the dialects. Previous results with the same setup could not be beaten
with this system.

Analysis of the impact the additional pre-training data had on the XLS-R model
show, that the effect is largely neutral or negative for the speech translation systems,
but shows positive influences for classification systems. Further research is needed
to remove uncertainties concerning variation and explain the apparent contradiction.

Multiple approaches are now discussed on how to increase the performance of the
systems in a future work. First, the translation model could benefit from a better
tuning of the hyperparameters during training. Data from FHNW illustrated that
increases of up to 4 BLEU are possible. Additionally, instead of using the unlabelled
data in pre-training, it could be applied in a semi- / self-supervised process and thus
generate new Text-to-Speech (TTS) samples. These additional datasets could then
be applied downstream for fine-tuning models and potentially increase prediction
accuracy. A different approach could be the creation of a new monolingual Swiss
German Transformer architecture, similar to the English base Wav2Vec2 model [16].
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The data for this approach would first have to be collected, as, for reference, the
base Wav2Vec2 model applied up to 60k hours of speech compared to our setup
using around 2.1k hours.

Training of the classification systems has to be revisited concerning corpora and di-
alects used for fine-tuning. Fine-tuning a model first on a STT task has proven itself
to be beneficial for both the XLSR-53 and XLS-R. However, the corpora used should
differ during the classification task to avoid overfitting the model. The dialects used
for training also have to be considered. Cantons that currently do not posses enough
data for efficient training can hinder a models performance significantly as shown
with the HA region.
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2019, p. 51.

[25] S. Nakamura, “Overcoming the Language Barrier with Speech Translation
Technology,” Science & Technology Trends - Quarterly Review, vol. 31, Apr.
2009.
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Appendix A

Experiment Details

Canton Abbreviation

Aargau AG
Appenzell Innerrhoden AI
Appenzell Ausserrhoden AR
Bern BE
Basel Landschaft BL
Basel Stadt BS
Fribourg FR
Glarus GL
Graubünden / Grisons AG
Jura JU
Luzern LU
Nidwalden NW
Obwalden OW
Sankt Gallen / Saint Gallen SG
Schaffhausen SH
Solothurn SO
Schwyz SZ
Thurgau TG
Uri UR
Wallis / Valais VS
Zug ZG
Zürich ZH

Table A.1: Swiss German canton abbreviations
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APPENDIX A. EXPERIMENT DETAILS

Parameter Value

Learning rate 3e−5

Training epochs 200
Training batch size 8
Gradient Accumulation steps 16
Warmup steps 200
Save steps 1000
Evaluation steps 500

Table A.2: Pre-Training training parameters

Parameter Value

Learning rate 3e−5

Training epochs 25
Training batch size 4
Gradient Accumulation steps 8
Warmup steps 100
Save steps 2000
Evaluation steps 1000

Table A.3: STT training parameters

Parameter Value

Learning rate 3e−5

Training epochs 25
Training batch size 4
Gradient Accumulation steps 8
Warmup steps 200
Save steps 1000
Evaluation steps 500

Table A.4: Classification training parameters
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Appendix B

Code & Manual

The developed code and accompanying manual for this is thesis is available on
github.zhaw.ch: https://github.zhaw.ch/Swiss-German-Dialects-Recognition/speech
translation
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